Summary: A processable approach to fabricate suspended and aligned single-walled carbon nanotube (SWNT) beams and cantilevers is presented in this article. Suspended dense SWNT membranes were aligned and deposited by a controlled dielectrophoresis process. A gallium focused ion beam at 30 keV and 50 pA with an optimized dose bombarded the SWNT membranes to prepare them for suspended nanoscale beams and cantilevers. To demonstrate the application of this process to nanoelectromechanical systems (NEMS), an SWNT switch was realized with a pull-in voltage of ∼ 7.8 V. Accordingly, the fabrication process of SWNT beams and cantilevers is believed to be very promising for prototyping of many NEMS devices such as switches, resonators, and biosensors.