Investigation of ultraviolet optical properties of semiconducting-enriched and metal-enriched single-walled carbon nanotube networks using spectroscopic ellipsometry

Citation: Young Ran Park, Woo-Jae Kim, Min Jae Ko, Nam Ki Mind and Cheol Jin Lee, Nanoscale 2012, 4, 6532 – 6536.

Summary: The ultraviolet optical properties of semiconducting-enriched and metallic-enriched single-walled carbon nanotube (semi-enriched and m-enriched SWCNT) networks were studied using spectroscopic ellipsometry. According to calculated energy loss function, the energy loss peak assigned to the maximum intensity of π-plasmon energy was found to increase from 4.5 eV to 5.0 eV as SWCNT network composition was changed from m-SWCNT enriched to semi-SWCNT enriched. These results clearly demonstrate that the dielectric response in the 4–6 eV range is sensitive to changes in the surrounding dielectric environment depending on the semi-/m-SWCNT content. Therefore, the spectral shift of this energy loss is attributed to the enhanced electron confinement by the presence of the surface plasmon due to a small amount of m-SWCNT, which is an important phenomenon at the SWCNT network.