Fully Printed, High Performance Carbon Nanotube Thin-Film Transistors on Flexible Substrates

Citation: Pak Heng Lau, Kuniharu Takei, Chuan Wang, Yeonkyeong Ju , Junseok Kim , Zhibin Yu, Toshitake Takahashi, Gyoujin Cho, and Ali Javey;Nano Lett. 2013, 13 (8), pp 3864–3869.

Summary: Fully printed transistors are a key component of ubiquitous flexible electronics. In this work, the advantages of an inverse gravure printing technique and the solution processing of semiconductor-enriched single-walled carbon nanotubes (SWNTs) are combined to fabricate fully printed thin-film transistors on mechanically flexible substrates. The fully printed transistors are configured in a top-gate device geometry and utilize silver metal electrodes and an inorganic/organic high-κ (17) gate dielectric. The devices exhibit excellent performance for a fully printed process, with mobility and on/off current ratio of up to 9 cm2/(V s) and 105, respectively. Extreme bendability is observed, without measurable change in the electrical performance down to a small radius of curvature of 1 mm. Given the high performance of the transistors, our high-throughput printing process serves as an enabling nanomanufacturing scheme for a wide range of large-area electronic applications based on carbon nanotube networks.