A Generalized Method for Evaluating the Metallic-to-Semiconducting Ratio of Separated Single-Walled Carbon Nanotubes by UV−vis−NIR Characterization

Citation: Liping Huang, Hongliang Zhang, Bin Wu, Yunqi Liu, Dacheng Wei, Jianyi Chen, Yunzhou Xue, Gui Yu, Hisashi Kajiura, Yongming Li, The Journal of Physical Chemistry (2010), 114, 28, 12095–12098.

Summary:A general and useful method has been developed to evaluate the metallic-to-semiconducting (M/S) ratio for separated single-walled carbon nanotubes (SWNTs). By virtue of measuring UV−vis−NIR spectra of a variety of solutions with different ratios of metallic-rich to semiconducting-rich SWNTs, the commercial IsoNanotubes samples as well as metallic-rich HiPCO SWNTs (HiPCO-M) separated by an Agarose gel method have been evaluated. Values of 99.5% metallic contents for IsoNanotubes-M, 98.9% semiconducting contents for IsoNanotubes-S, and 1.24 for the absorption coefficient of IsoNanotubes, whereas 80.4% metallic contents for HiPCO-M and 1.05 for the absorption coefficient of HiPCO SWNTs were obtained. This method does not need pure metallic (M-) or semiconducting (S-) SWNTs as references. Furthermore, we found that this method can also be applied to evaluate the M/S ratio for any SWNT samples.