Transforming Ideas to Reality

Materials & Integration Thrust: Three Dimensional Monolithic System on a Chip (3DSoC)

3DSoC: Our Approach

- Monolithic 3D Integration
 - Fine-grained integration: logic + memory

Data storage
Memory access
Computing logic
Conventional BEOL vias

RRAM Technology

- Dense on-chip non-volatile memory
 - Simple
 - BEOL compatible
 - Path to 3D RRAM

CNFET Technology

- 90 nm technology node
 - Relaxes technology requirements
 - BEOL compatible
 - Fully complementary

Carbon Nanotube FETs (CNFETs)

- Requires low temperature fabrication
- Challenging with conventional silicon CMOS

Enabling Technologies

- Resistive RAM (RRAM)

CNFETs: Recent Progress

<table>
<thead>
<tr>
<th>materials</th>
<th>processing</th>
<th>design</th>
<th>manufacturing</th>
</tr>
</thead>
</table>

- Si-compatible; >99.999% purity
- Robust doping: CNFET CMOS
- Immune to metallic CNTs
- Commercial facilities

Roadmap

- Introduce in Foundry
- Finalizing Technology
- Monolithic 3D ICs
 - CNFETs (optimize, transfer, PDK)
 - monolithic 3D fabrication
 - Program + system integration
- 2D CMOS chips
 - stand-up CNFET, RRAM modules
 - demo monolithic 3D ICs
 - develop MPW offering

Team

- RRAM (optimize, transfer, PDK)
- monolithic 3D system design
- evaluation (benchmarking)
- improving CNT material
- high-volume CNT production

This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA).

The views, opinions and/or findings expressed are those of the author and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.