Band Gap Expansion, Shear Inversion Phase Change Behaviour and Low-Voltage Induced Crystal Oscillation in Low-Dimensional Tin Selenide Crystals

Application: Electromechanical

Citation: Robin Carter, Mikhail Suyetin, Samantha Lister, M. Adam Dyson, Harrison Trewhitt, Sanam Goel, Zheng Liu, Kazu Suenaga, Cristina Giusca, Reza Jalilikashtiban, John L Hutchison, J C Dore, Gavin Bell, Elena Bichoutskaia, and Jeremy Sloan 07 Mar 2014.

Summary: In common with rocksalt-type alkali halide phases and also semiconductors such as GeTe and SnTe, SnSe forms all-surface two atom-thick low dimensional crystals when encapsulated within single walled nanotubes (SWNTs) with diameters below ~1.4 nm. Whereas previous Density Functional Theory (DFT) studies indicate that optimised low-dimensional trigonal HgTe changes from a semi-metal to a semi-conductor, low-dimensional SnSe crystals typically undergo band-gap expansion. In slightly wider diameter SWNTs (~1.4-1.6 nm), we observe that three atom thick low dimensional SnSe crystals undergo a previously unobserved form of a shear inversion phase change resulting in two discrete strain states in a section of curved nanotube. Under low-voltage (i.e. 80-100 kV) imaging conditions in a transmission electron microscope, encapsulated SnSe crystals undergo longitudinal and rotational oscillations, possibly as a result of the increase in the inelastic scattering cross-section of the sample at those voltages.

Aligned Dense Single-Walled Carbon Nanotube Beams and Cantilevers for Nanoelectromechanical Systems Applications

Citation: Miao Lu, Min-Woo Jang, Stephen A. Campbell, and Tianhong Cui, Journal of Vacuum Science B (2010), 28, 3, 522.

Summary: A processable approach to fabricate suspended and aligned single-walled carbon nanotube (SWNT) beams and cantilevers is presented in this article. Suspended dense SWNT membranes were aligned and deposited by a controlled dielectrophoresis process. A gallium focused ion beam at 30 keV and 50 pA with an optimized dose bombarded the SWNT membranes to prepare them for suspended nanoscale beams and cantilevers. To demonstrate the application of this process to nanoelectromechanical systems (NEMS), an SWNT switch was realized with a pull-in voltage of ∼ 7.8 V. Accordingly, the fabrication process of SWNT beams and cantilevers is believed to be very promising for prototyping of many NEMS devices such as switches, resonators, and biosensors.

Characterization of Carbon Nanotube Nanoswitches with Gigahertz Resonance Frequency and Low Pull-In Voltages Using Electrostatic Force Microscopy

Application: Electromechanical

Citation: Miao Lu, Xuekun Lu, Min-Woo Jang, Stephen A. Campbell, Tianhong Cui, Journal of Micromechanics and Microengineering (2010), 20, 105016.

Summary: An electrostatic force microscope (EFM) was used to characterize single-walled carbon nanotube (SWNT)-based nanoswitches in this paper. A conductive atomic force microscopy (AFM) tip acted as a mechanical probe as well as a positioning electrode in the experiment. The resonance frequency of the SWNT beams was computed from the measured SWNTs’ dimension and spring constant. The pull-in voltages and the corresponding gaps were extracted simultaneously from a set of force curves at different EFM probe bias voltages. The adhesive force between the AFM tip and the SWNT beam was measured through the analysis of retract force curves. The relationship between the pull-in voltage and the SWNT nanoswitch gap was in agreement with the electrostatic pull-in theory. Long-range forces such as meniscus force or electrostatic force from surface charges engaged the SWNT beam when the gap was below 6 nm in atmosphere. The SWNT beam with a resonance frequency of 1.1 GHz was actuated by a voltage of 2 V for a gap of 6.5 nm. The average adhesive force between an SWNT beam and a platinum/iridium (PtIr5)-coated tip was found to be about 50 nN. Considering the stiffness of the 1.1 GHz SWNT beam, the elastic restoring force at 6.5 nm exceeds 53 nN, which will overcome the adhesive force and release the 1.1 GHz SWNT beam. Finally, some possible approaches to further improve the behavior of SWNT nanoswitches are discussed.